Section 6. Conclusions (from DOI: 10.3390/v12020211)
From publication: "Current Trends in Diagnostics of Viral Infections of Unknown Etiology" published as Viruses; 2020 Feb 14 ; 12 (2); DOI: https://doi.org/10.3390/v12020211
Section 6. Conclusions
Studying viral genetics with NGS methods is rapidly gaining clinical significance, be it in diagnostics, epidemiological research, the hunt for drug resistance strains or infection control. Various approaches exist that feature WGS, amplicon sequencing, enrichment sequencing and metagenomics, the choice depending on the type of pathogen and experiment objective. Metagenomics, for instance, works best with unknown viruses, whereas PCR-based techniques are apt for samples with low diversity and short genomes. Target enrichment is preferred whenever viruses with large genomes are concerned or if the sample contains a multitude of heterogeneous viruses that feature well-identified nucleic acid sequences.
At present, two major research vectors exist: (1) developing techniques for depletion of bacterial and host sequences that would spare viral nucleic acids and (2) evolving long-range sequencing to the point where it becomes financially and qualitatively comparable to the second-generation methods. The key to success in the struggle against viruses and their shifty nature lies within combining current methods and thus potentiating the creation of the ultimate diagnostic tool. Ideally, it has to be able to detect and describe viral pathogens and predict the evolution of viruses to let clinicians combat them with the utmost effectiveness.