Section 3.3.7: Exosomes in the TME and CSCs (from DOI: 10.1038/s41392-020-0110-5)

From Wikibase.slis.ua.edu
Jump to navigation Jump to search


Navigation
ArticleTargeting cancer stem cell pathways for cancer therapy (DOI: 10.1038/s41392-020-0110-5)
Sections in this Publication
SectionSection 1: Introduction (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2: The concept of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2.1: Biological characteristics of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2.2: Isolation and identification of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3: Factors regulating CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.1: Major transcription factors in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2: Major signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.1: Wnt signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.2: Notch signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.3: Hh signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.4: NF-kappaB signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.5: JAK-STAT signaling pathway (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.6: TGF/SMAD signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.7PI3K/AKT/mTOR signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.8: PPAR signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.9: Interactions between signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3: The microenvironment of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.1: Vascular niche microenvironments and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.2: The hypoxia microenvironment and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.3: Tumor-associated macrophages and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.4: Cancer-associated fibroblasts and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.5: Cancer-associated MSCs and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.6: Extracellular matrix and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.7: Exosomes in the TME and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4: Therapeutic targeting of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.1: Agents targeting CSC-associated surface biomarkers in clinical trials (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.2: Agents targeting CSC-associated signaling pathways in clinical trials (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.3: Targeting the CSC microenvironment (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.4: CSC-directed immunotherapy (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 5: Conclusions and perspectives (from DOI: 10.1038/s41392-020-0110-5)
SectionCompeting interests (from DOI: 10.1038/s41392-020-0110-5)
SectionBibliography (from DOI: 10.1038/s41392-020-0110-5)
Named Entities in this Section

From publication: "Targeting cancer stem cell pathways for cancer therapy" published as Signal Transduct Target Ther; 2020 ; 5 8; DOI: https://doi.org/10.1038/s41392-020-0110-5

Section 3.3.7: Exosomes in the TME and CSCs

Exosomes are nanovesicles secreted by various types of living cells (30-100 nm in diameter) and are widely distributed in peripheral blood, saliva, urine, ascites, pleural effusion, breast milk, and other body fluids. Exosomes contain a large number of functional proteins, RNA, microRNAs, DNA fragments, and other bioactive substances. These bioactive substances mediate material transport and information exchange between cells, thus affecting the physiological function of cells. The exosomes secreted by cancer cells promote angiogenesis, induce differentiation of tumor-related fibroblasts, participate in immune regulation of the TME, and regulate the microenvironment before metastasis. Clinical analysis has revealed that exosomes are released at higher levels in cancer cells.

Recent studies have shown that endocytosis of lipid rafts in MSCs is associated with increased secretion of exosomes. Exosome signaling mediates the interaction of CSCs and normal stem cells, thereby regulating oncogenesis and tumor development. Exosomes also regulate CSC growth by targeting specific signaling pathways, such as Wnt, Notch, Hippo, Hh, and NF-kappaB. Extracellular vesicles released by glioblastoma stem cells promote neurosphere formation, endothelial tube formation, and the invasion of glioblastoma. CSCs promote cell proliferation and self-renewal through crosstalk between exosome signal transduction and the surrounding microenvironment. The exosomes released from CSCs affect signal transduction in nearby breast cancer cells and increase the stemness of breast cancer cells. Similarly, fibroblast-derived exosomes contribute to chemoresistance by promoting colorectal CSC growth. Exosomes in the TME promote the transformation of non-CSCs into CSCs. CAF-derived exosomes significantly increase the ability to form mammary globules and promote the stemness of breast cancer cells. Similarly, CAF-derived exosomes also promote sphere formation of colorectal cancer cells by activating Wnt signaling and ultimately increase the percentage of CSCs. Exosomes from glioma-associated MSCs increase the tumorigenicity of glioma stem-like cells by transferring miR-1587. In addition, exosomes regenerate stem cell phenotypes by mediating the EMT or regulating stem cell-related signaling pathways, such as the Wnt pathway, Notch pathway, Hh pathway and other pathways, which convert cells into CSCs. Exosomes have many advantages, such as low immunogenicity, biocompatibility, easy production, cytotoxicity, easy storage, high drug loading capacity, and long life and have become ideal drug carriers for cancer therapy.