Section 3: Factors regulating CSCs (from DOI: 10.1038/s41392-020-0110-5)

From Wikibase.slis.ua.edu
Jump to navigation Jump to search


Navigation
ArticleTargeting cancer stem cell pathways for cancer therapy (DOI: 10.1038/s41392-020-0110-5)
Sections in this Publication
SectionSection 1: Introduction (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2: The concept of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2.1: Biological characteristics of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 2.2: Isolation and identification of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3: Factors regulating CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.1: Major transcription factors in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2: Major signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.1: Wnt signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.2: Notch signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.3: Hh signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.4: NF-kappaB signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.5: JAK-STAT signaling pathway (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.6: TGF/SMAD signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.7PI3K/AKT/mTOR signaling pathway in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.8: PPAR signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.2.9: Interactions between signaling pathways in CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3: The microenvironment of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.1: Vascular niche microenvironments and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.2: The hypoxia microenvironment and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.3: Tumor-associated macrophages and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.4: Cancer-associated fibroblasts and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.5: Cancer-associated MSCs and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.6: Extracellular matrix and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 3.3.7: Exosomes in the TME and CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4: Therapeutic targeting of CSCs (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.1: Agents targeting CSC-associated surface biomarkers in clinical trials (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.2: Agents targeting CSC-associated signaling pathways in clinical trials (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.3: Targeting the CSC microenvironment (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 4.4: CSC-directed immunotherapy (from DOI: 10.1038/s41392-020-0110-5)
SectionSection 5: Conclusions and perspectives (from DOI: 10.1038/s41392-020-0110-5)
SectionCompeting interests (from DOI: 10.1038/s41392-020-0110-5)
SectionBibliography (from DOI: 10.1038/s41392-020-0110-5)
Named Entities in this Section

From publication: "Targeting cancer stem cell pathways for cancer therapy" published as Signal Transduct Target Ther; 2020 ; 5 8; DOI: https://doi.org/10.1038/s41392-020-0110-5

Section 3: Factors regulating CSCs

CSCs can originate from at least four cell types, including normal stem cells, directed group progenitor cells, mature cells, and the fusion of stem cells and other mutant cells. Therefore, transformed CSCs from normal cells require multiple gene mutations, epigenetic changes, uncontrolled signaling pathways, and continuous regulation of the microenvironment. It is currently believed that there are many similarities between CSCs and embryonic stem (ES) cells, especially regarding their ability to grow indefinitely and self-renew, signaling pathways and some transcription factors. In addition, CSCs exist in the supporting microenvironment, which is vital for their survival. Moreover, the complex interaction between CSCs and their microenvironment can further regulate CSC growth. This section will discuss the effects of transcription factors, signaling pathways, and the microenvironment on CSC survival, apoptosis, and metastasis.